图书介绍
大数据分析与算法【下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线】

- (挪)拉金德拉·阿卡拉卡(Rajendra Akerkar) 著
- 出版社: 北京:机械工业出版社
- ISBN:9787111608769
- 出版时间:2018
- 标注页数:194页
- 文件大小:68MB
- 文件页数:206页
- 主题词:数据处理
PDF下载
下载说明
大数据分析与算法PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第1章 绪论1
1.1 引言1
1.2 数据科学的历史2
1.3 现代商业中数据科学的重要性3
1.4 数据科学家5
1.5 三维数据科学活动6
1.5.1 管理数据流7
1.5.2 处理数据管理8
1.5.3 数据分析11
1.6 数据科学与其他领域交叉11
1.7 数据分析思维13
1.8 应用领域13
1.8.1 资源的可持续发展13
1.8.2 利用社交平台进行各种活动14
1.8.3 智能Web应用14
1.8.4 Google自动统计员项目15
1.9 应用计算智能管理数据科学活动15
1.10 商业中的数据科学场景17
1.11 有助于数据科学的工具和技术17
1.11.1 数据清洗工具18
1.11.2 数据管理和建模工具19
1.11.3 数据可视化工具20
1.12 练习21
参考文献22
第2章 数据分析23
2.1 引言23
2.2 跨行业标准过程24
2.3 数据分析生命周期25
2.4 数据科学项目生命周期27
2.5 数据分析的复杂性28
2.6 从数据到洞察力30
2.7 构建分析能力:银行案例31
2.8 数据质量32
2.9 数据准备过程33
2.10 沟通分析结果34
2.10.1 沟通分析结果的策略34
2.10.2 数据可视化35
2.10.3 可视化技术36
2.11 练习37
参考文献37
第3章 基本学习算法38
3.1 从数据中学习38
3.2 监督学习40
3.2.1 线性回归40
3.2.2 决策树41
3.2.3 随机森林46
3.2.4 k-近邻算法47
3.2.5 逻辑回归49
3.2.6 模型组合器50
3.2.7 朴素贝叶斯53
3.2.8 贝叶斯信念网络54
3.2.9 支持向量机56
3.3 无监督学习57
3.3.1 Apriori算法58
3.3.2 k-means算法60
3.3.3 用于数据压缩的降维62
3.4 强化学习62
3.5 案例研究:使用机器学习进行市场营销活动65
3.6 练习66
参考文献67
第4章 模糊逻辑68
4.1 引言68
4.2 模糊隶属函数70
4.2.1 三角形隶属函数71
4.2.2 梯形隶属函数71
4.2.3 高斯隶属函数71
4.2.4 sigmoid隶属函数72
4.3 隶属值分配方法72
4.4 模糊化与解模糊化方法73
4.5 模糊集合操作73
4.5.1 模糊集合的并集74
4.5.2 模糊集合的交集74
4.5.3 模糊集合的补集74
4.6 模糊集合性质76
4.7 模糊关系76
4.8 模糊命题79
4.8.1 模糊连接词79
4.8.2 析取79
4.8.3 合取80
4.8.4 否定80
4.8.5 蕴含80
4.9 模糊推理80
4.10 基于模糊规则的系统81
4.11 数据科学的模糊逻辑82
4.11.1 应用1:Web内容挖掘83
4.11.2 应用2:Web结构挖掘84
4.11.3 应用3:Web使用挖掘85
4.11.4 应用4:环境和社交数据处理86
4.12 用模糊逻辑进行数据科学活动的工具和技术87
4.13 练习88
参考文献88
第5章 人工神经网络89
5.1 引言89
5.2 符号学习方法90
5.3 人工神经网络及其特点91
5.4 ANN模型93
5.4.1 Hopfield模型93
5.4.2 感知器模型94
5.4.3 多层感知器96
5.4.4 多层感知器的深度学习98
5.4.5 其他ANN模型100
5.4.6 线性回归与神经网络101
5.5 ANN工具和程序102
5.6 社交网络平台上的情感挖掘103
5.6.1 情感挖掘相关工作103
5.6.2 广泛架构104
5.6.3 神经网络设计104
5.7 应用与挑战106
5.8 关注点107
5.9 练习108
参考文献109
第6章 遗传算法与进化计算111
6.1 引言111
6.2 遗传算法112
6.3 遗传算法的基本原理114
6.3.1 个体编码114
6.3.2 变异114
6.3.3 交叉115
6.3.4 适应度函数116
6.3.5 选择116
6.3.6 其他编码策略117
6.4 利用遗传算法进行函数优化的实例118
6.5 模式与模式定理120
6.5.1 实例、定义位和模式顺序120
6.5.2 模式的重要性121
6.6 基于特殊应用的遗传算子121
6.7 进化编程123
6.8 遗传算法在医疗保健中的应用124
6.8.1 医疗保健案例124
6.8.2 基于遗传算法的病人调度系统125
6.8.3 编码候选者127
6.8.4 种群上的操作127
6.8.5 其他应用128
6.9 练习130
参考文献131
第7章 其他元启发式和分类方法132
7.1 引言132
7.2 自适应记忆过程132
7.2.1 禁忌搜索133
7.2.2 分散搜索134
7.2.3 路径重连136
7.3 群体智能136
7.3.1 蚁群优化137
7.3.2 人工蜂群算法138
7.3.3 河流形成动力学139
7.3.4 粒子群优化139
7.3.5 随机扩散搜索141
7.3.6 群体智能与大数据142
7.4 案例推理142
7.4.1 案例推理中的学习144
7.4.2 案例推理与数据科学145
7.4.3 处理复杂的领域146
7.5 粗糙集146
7.6 练习148
参考文献148
第8章 分析和大数据149
8.1 引言149
8.2 传统分析与大数据分析150
8.3 大规模并行处理152
8.3.1 MapReduce152
8.3.2 与RDBMS的比较154
8.3.3 共享存储的并行编程155
8.3.4 Apache Hadoop生态系统155
8.3.5 Hadoop分布式文件系统157
8.4 NoSQL158
8.5 SPARK160
8.6 运动的数据161
8.6.1 数据流处理162
8.6.2 实时数据流162
8.6.3 数据流与DBMS163
8.7 扩展机器学习算法164
8.8 数据科学中的隐私、安全和伦理166
8.9 练习167
参考文献167
第9章 R语言的数据科学活动168
9.1 入门168
9.2 运行代码169
9.3 R基础知识169
9.4 分析数据172
9.5 示例172
9.5.1 线性回归173
9.5.2 逻辑回归173
9.5.3 预测173
9.5.4 k-最近邻分类173
9.5.5 朴素贝叶斯173
9.5.6 决策树174
9.5.7 k-means聚类175
9.5.8 随机森林176
9.5.9 Apriori176
9.5.10 AdaBoost176
9.5.11 降维177
9.5.12 支持向量机177
9.5.13 人工神经网络177
9.6 在R中可视化178
9.7 编写自己的函数181
9.8 Hadoop上的开源R182
参考文献182
附录A 数据科学工具183
附录B 计算智能工具188
热门推荐
- 3802698.html
- 3294377.html
- 3360417.html
- 795794.html
- 3082546.html
- 2772449.html
- 1567088.html
- 1737059.html
- 3387121.html
- 1314194.html
- http://www.ickdjs.cc/book_502858.html
- http://www.ickdjs.cc/book_2965219.html
- http://www.ickdjs.cc/book_3445283.html
- http://www.ickdjs.cc/book_1581417.html
- http://www.ickdjs.cc/book_928487.html
- http://www.ickdjs.cc/book_393545.html
- http://www.ickdjs.cc/book_2693676.html
- http://www.ickdjs.cc/book_2623816.html
- http://www.ickdjs.cc/book_3822523.html
- http://www.ickdjs.cc/book_963497.html