图书介绍
实验设计和分析 英文版【下载 pdf 百度网盘 epub 免费 2025 电子版 mobi 在线】

- (美)狄恩著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510005619
- 出版时间:2010
- 标注页数:741页
- 文件大小:150MB
- 文件页数:760页
- 主题词:试验设计(数学)-英文;试验分析(数学)-英文
PDF下载
下载说明
实验设计和分析 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.Principles and Techniques1
1.1.Design:Basic Principles and Techniques1
1.1.1.The Art of Experimentation1
1.1.2.Replication2
1.1.3.Blocking3
1.1.4.Randomization3
1.2.Analysis:Basic Principles and Techniques5
2.Planning Experiments7
2.1.Introduction7
2.2.A Checklist for Planning Experiments7
2.3.A Real Experiment—Cotton-Spinning Experiment14
2.4.Some Standard Experimental Designs17
2.4.1.Completely Randomized Designs18
2.4.2.Block Designs18
2.4.3.Designs with Two or More Blocking Factors19
2.4.4.Split-Plot Designs21
2.5.More Real Experiments22
2.5.1.Soap Experiment22
2.5.2.Battery Experiment26
2.5.3.Cake-Baking Experiment29
Exercises31
3.Designs with One Source of Variation33
3.1.Introduction33
3.2.Randomization34
3.3.Model for a Completely Randomized Design35
3.4.Estimation of Parameters37
3.4.1.Estimable Functions of Parameters37
3.4.2.Notation37
3.4.3.Obtaining Least Squares Estimates38
3.4.4.Properties of Least Squares Estimators40
3.4.5.Estimation of σ242
3.4.6.Confidence Bound for σ243
3.5.One-Way Analysis of Variance44
3.5.1.Testing Equality of Treatment Effects44
3.5.2.Use of p-Values48
3.6.Sample Sizes49
3.6.1.Expected Mean Squares for Treatments50
3.6.2.Sample Sizes Using Power of a Test51
3.7.A Real Experiment—Soap Experiment,Continued53
3.7.1.Checklist,Continued53
3.7.2.Data Collection and Analysis54
3.7.3.Discussion by the Experimenter56
3.7.4.Further Observations by the Experimenter56
3.8.Using SAS Software57
3.8.1.Randomization57
3.8.2.Analysis of Variance58
Exercises61
4.Inferences for Contrasts and Treatment Means67
4.1.Introduction67
4.2.Contrasts68
4.2.1.Pairwise Comparisons69
4.2.2.Treatment Versus Control70
4.2.3.Difference of Averages70
4.2.4.Trends71
4.3.Individual Contrasts and Treatment Means73
4.3.1.Confidence Interval for a Single Contrast73
4.3.2.Confidence Interval for a Single Treatment Mean75
4.3.3.Hypothesis Test for a Single Contrast or Treatment Mean75
4.4.Methods of Multiple Comparisons78
4.4.1.Multiple Confidence Intervals78
4.4.2.Bonferroni Method for Preplanned Comparisons80
4.4.3.Scheffé Method of Multiple Comparisons83
4.4.4.Tukey Method for All Pairwise Comparisons85
4.4.5.Dunnett Method for Treatment-Versus-Control Comparisons87
4.4.6.Hsu Method for Multiple Comparisons with the Best Treatment89
4.4.7.Combination of Methods91
4.4.8.Methods Not Controlling Experimentwise Error Rate92
4.5.Sample Sizes92
4.6.Using SAS Software94
4.6.1.Inferences on Individual Contrasts94
4.6.2.Multiple Comparisons96
Exercises97
5.Checking Model Assumptions103
5.1.Introduction103
5.2.Strategy for Checking Model Assumptions104
5.2.1.Residuals104
5.2.2.Residual Plots105
5.3.Checking the Fit of the Model107
5.4.Checking for Outliers107
5.5.Checking Independence of the Error Terms109
5.6.Checking the Equal Variance Assumption111
5.6.1.Detection of Unequal Variances112
5.6.2.Data Transformations to Equalize Variances113
5.6.3.Analysis with Unequal Error Variances116
5.7.Checking the Normality Assumption119
5.8.Using SAS Software122
5.8.1.Using SAS to Generate Residual Plots122
5.8.2.Transforming the Data126
Exercises127
6.Experiments with Two Crossed Treatment Factors135
6.1.Introduction135
6.2.Models and Factorial Effects136
6.2.1.The Meaning of Interaction136
6.2.2.Models for Two Treatment Factors138
6.2.3.Checking the Assumptions on the Model140
6.3.Contrasts141
6.3.1.Contrasts for Main Effects and Interactions141
6.3.2.Writing Contrasts as Coefficient Lists143
6.4.Analysis of the Two-Way Complete Model145
6.4.1.Least Squares Estimators for the Two-Way Complete Model146
6.4.2.Estimation of σ2 for the Two-Way Complete Model147
6.4.3.Multiple Comparisons for the Complete Model149
6.4.4.Analysis of Variance for the Complete Model152
6.5.Analysis of the Two-Way Main-Effects Model158
6.5.1.Least Squares Estimators for the Main-Effects Model158
6.5.2.Estimation of σ2 in the Main-Effects Model162
6.5.3.Multiple Comparisons for the Main-Effects Model163
6.5.4.Unequal Variances165
6.5.5.Analysis of Variance for Equal Sample Sizes165
6.5.6.Model Building168
6.6.Calculating Sample Sizes168
6.7.Small Experiments169
6.7.1.One Observation per Cell169
6.7.2.Analysis Based on Orthogonal Contrasts169
6.7.3.Tukey's Test for Additivity172
6.7.4.A Real Experiment—Air Velocity Experiment173
6.8.Using SAS Software175
6.8.1.Contrasts and Multiple Comparisons177
6.8.2.Plots181
6.8.3.One Observation per Cell182
Exercises183
7.Several Crossed Treatment Factors193
7.1.Introduction193
7.2.Models and Factorial Effects194
7.2.1.Models194
7.2.2.The Meaning of Interaction195
7.2.3.Separability of Factorial Effects197
7.2.4.Estimation of Factorial Contrasts199
7.3.Analysis—Equal Sample Sizes201
7.4.A Real Experiment—Popcorn-Microwave Experiment205
7.5.One Observation per Cell211
7.5.1.Analysis Assuming That Certain Interaction Effects Are Negligible211
7.5.2.Analysis Using Normal Probability Plot of Effect Estimates213
7.5.3.Analysis Using Confidence Intervals215
7.6.Design for the Control of Noise Variability217
7.6.1.Analysis of Design-by-Noise Interactions218
7.6.2.Analyzing the Effects of Design Factors on Variability221
7.7.Using SAS Software223
7.7.1.Normal Probability Plots of Contrast Estimates224
7.7.2.Voss-Wang Confidence Interval Method224
7.7.3.Identification of Robust Factor Settings226
7.7.4.Experiments with Empty Cells227
Exercises231
8.Polynomial Regression243
8.1.Introduction243
8.2.Models244
8.3.Least Squares Estimation(Optional)248
8.3.1.Normal Equations248
8.3.2.Least Squares Estimates for Simple Linear Regression248
8.4.Test for Lack of Fit249
8.5.Analysis of the Simple Linear Regression Model251
8.6.Analysis of Polynomial Regression Models255
8.6.1.Analysis of Variance255
8.6.2.Confidence Intervals257
8.7.Orthogonal Polynomials and Trend Contrasts(Optional)258
8.7.1.Simple Linear Regression258
8.7.2.Quadratic Regression260
8.7.3.Comments261
8.8.A Real Experiment—Bean-Soaking Experiment262
8.8.1.Checklist262
8.8.2.One-Way Analysis of Variance and Multiple Comparisons264
8.8.3.Regression Analysis267
8.9.Using SAS Software268
Exercises273
9.Analysis of Covariance277
9.1.Introduction277
9.2.Models278
9.2.1.Checking Model Assumptions and Equality of Slopes279
9.2.2.Model Extensions279
9.3.Least Squares Estimates280
9.3.1.Normal Equations(Optional)280
9.3.2.Least Squares Estimates and Adjusted Treatment Means281
9.4.Analysis of Covariance282
9.5.Treatment Contrasts and Confidence Intervals286
9.5.1.Individual Confidence Intervals286
9.5.2.Multiple Coinparisons287
9.6.Using SAS Software288
Exercises292
10.Complete Block Designs295
10.1.Introduction295
10.2.Blocks,Noise Factors or Covariates?296
10.3.Design Issues297
10.3.1.Block Sizes297
10.3.2.Complete Block Design Definitions298
10.3.3.The Randomized Complete Block Design299
10.3.4.The General Complete Block Design300
10.3.5.How Many Observations?301
10.4.Analysis of Randomized Complete Block Designs301
10.4.1.Model and Analysis of Variance301
10.4.2.Multiple Comparisons305
10.5.A Real Experiment—Cotton-Spinning Experiment306
10.5.1.Design Details306
10.5.2.Sample-Size Calculation307
10.5.3.Analysis of the Cotton-Spinning Experiment307
10.6.Analysis of General Complete Block Designs309
10.6.1.Model and Analysis of Variance309
10.6.2.Multiple Comparisons for the General Complete Block Design312
10.6.3.Sample-Size Calculations315
10.7.Checking Model Assumptions316
10.8.Factorial Experiments317
10.9.Using SAS Software320
Exercises324
11.Incomplete Block Designs339
11.1.Introduction339
11.2.Design Issues340
11.2.1.Block Sizes340
11.2.2.Design Plans and Randomization340
11.2.3.Estimation of Contrasts(Optional)342
11.2.4.Balanced Incomplete Block Designs343
11.2.5.Group Divisible Designs345
11.2.6.Cyclic Designs346
11.3.Analysis of General Incomplete Block Designs348
11.3.1.Contrast Estimators and Multiple Comparisons348
11.3.2.Least Squares Estimation(Optional)351
11.4.Analysis of Balanced Incomplete Block Designs354
11.4.1.Multiple Comparisons and Analysis of Variance354
11.4.2.A Real Experiment—Detergent Experiment355
11.5.Analysis of Group Divisible Designs360
11.5.1.Multiple Comparisons and Analysis of Variance360
11.6.Analysis of Cyclic Designs362
11.7.A Real Experiment—Plasma Experiment362
11.8.Sample Sizes368
11.9.Factorial Experiments369
11.9.1.Factorial Structure369
11.10.Using SAS Software372
11.10.1.Analysis of Variance and Estimation of Contrasts372
11.10.2.Plots377
Exercises378
12.Designs with Two Blocking Factors387
12.1.Introduction387
12.2.Design Issues388
12.2.1.Selection and Randomization of Row-Column Designs388
12.2.2.Latin Square Designs389
12.2.3.Youden Designs391
12.2.4.Cyclic and Other Row-Column Designs392
12.3.Model for a Row-Column Design394
12.4.Analysis of Row-Column Designs(Optional)395
12.4.1.Least Squares Estimation(Optional)395
12.4.2.Solution for Complete Column Blocks(Optional)397
12.4.3.Formula for ssE(Optional)398
12.4.4.Analysis of Variance for a Row-Column Design(Optional)399
12.4.5.Confidence Intervals and Multiple Comparisons401
12.5.Analysis of Latin Square Designs401
12.5.1.Analysis of Variance for Latin Square Designs401
12.5.2.Confidence Intervals for Latin Square Designs403
12.5.3.How Many Observations?405
12.6.Analysis of Youden Designs406
12.6.1.Analysis of Variance for Youden Designs406
12.6.2.Confidence Intervals for Youden Designs407
12.6.3.How Many Observations?407
12.7.Analysis of Cyclic and Other Row-Column Designs408
12.8.Checking the Assumptions on the Model409
12.9.Factorial Experiments in Row-Column Designs410
12.10.Using SAS Software410
12.10.1.Factorial Model413
12.10.2.Plots415
Exercises415
13.Confounded Two-Level Factorial Experiments421
13.1.Introduction421
13.2.Single replicate factorial experiments422
13.2.1.Coding and notation422
13.2.2.Confounding422
13.2.3.Analysis423
13.3.Confounding Using Contrasts424
13.3.1.Contrasts424
13.3.2.Experiments in Two Blocks425
13.3.3.Experiments in Four Blocks430
13.3.4.Experiments in Eight Blocks432
13.3.5.Experiments in More Than Eight Blocks433
13.4.Confounding Using Equations433
13.4.1.Experiments in Two Blocks433
13.4.2.Experiments in More Than Two Blocks435
13.5.A Real Experiment—Mangold Experiment437
13.6.Plans for Confounded 2p Experiments441
13.7.Multireplicate Designs441
13.8.Complete Confounding:Repeated Single-Replicate Designs442
13.8.1.A Real Experiment—Decontamination Experiment442
13.9.Partial Confounding446
13.10.Comparing the Multireplicate Designs449
13.11.Using SAS Software452
Exercises454
14.Confounding in General Factorial Experiments461
14.1.Introduction461
14.2.Confounding with Factors at Three Levels462
14.2.1.Contrasts462
14.2.2.Confounding Using Contrasts463
14.2.3.Confounding Using Equations464
14.2.4.A Real Experiment—Dye Experiment467
14.2.5.Plans for Confounded 3p Experiments470
14.3.Designing Using Pseudofactors471
14.3.1.Confounding in 4p Experiments471
14.3.2.Confounding in 2p×4q Experiments472
14.4.Designing Confounded Asymmetrical Experiments472
14.5.Using SAS Software475
Exercises477
15.Fractional Factorial Experiments483
15.1.Introduction483
15.2.Fractions from Block Designs;Factors with 2 Levels484
15.2.1.Half-Fractions of 2p Experiments;2p-1 Experiments484
15.2.2.Resolution and Notation487
15.2.3.A Real Experiment—Soup Experiment487
15.2.4.Quarter-Fractions of 2p Experiments;2p-2 Experiments490
15.2.5.Smaller Fractions of 2p Experiments494
15.3.Fractions from Block Designs;Factors with 3 Levels496
15.3.1.One-Third Fractions of 3p Experiments;3p-1 Experiments496
15.3.2.One-Ninth Fractions of 3p Experiments;3p-2 Experiments501
15.4.Fractions from Block Designs;Other Experiments501
15.4.1.2p×4q Experiments501
15.4.2.2p×3q Experiments502
15.5.Blocked Fractional Factorial Experiments503
15.6.Fractions from Orthogonal Arrays506
15.6.1.2p Orthogonal Arrays506
15.6.2.Saturated Designs512
15.6.3.2p×4q Orthogonal Arrays513
15.6.4.3p Orthogonal Arrays514
15.7.Design for the Control of Noise Variability515
15.7.1.A Real Experiment—Inclinometer Experiment516
15.8.Using SAS Software521
15.8.1.Fractional Factorials521
15.8.2.Design for the Control of Noise Variability524
Exercises529
16.Response Surface Methodology547
16.1.Introduction547
16.2.First-Order Designs and Analysis549
16.2.1.Models549
16.2.2.Standard First-Order Designs551
16.2.3.Least Squares Estimation552
16.2.4.Checking Model Assumptions553
16.2.5.Analysis of Variance553
16.2.6.Tests for Lack of Fit554
16.2.7.Path of Steepest Ascent559
16.3.Second-Order Designs and Analysis561
16.3.1.Models and Designs561
16.3.2.Central Composite Designs562
16.3.3.Generic Test for Lack of Fit of the Second-Order Model564
16.3.4.Analysis of Variance for a Second-Order Model564
16.3.5.Canonical Analysis of a Second-Order Model566
16.4.Properties of Second-Order Designs:CCDs569
16.4.1.Rotatability569
16.4.2.Orthogonality570
16.4.3.Orthogonal Blocking571
16.5.A Real Experiment:Flour Production Experiment,Continued573
16.6.Box-Behnken Designs576
16.7.Using SAS Software579
16.7.1.Analysis of a Standard First-Order Design579
16.7.2.Analysis of a Second-Order Design582
Exercises586
17.Random Effects and Variance Components593
17.1.Introduction593
17.2.Some Examples594
17.3.One Random Effect596
17.3.1.The Random-Effects One-Way Model596
17.3.2.Estimation of σ2597
17.3.3.Estimation of σ2 T598
17.3.4.Testing Equality of Treatment Effects601
17.3.5.Confidence Intervals for Variance Components603
17.4.Sample Sizes for an Experiment with One Random Effect607
17.5.Checking Assumptions on the Model610
17.6.Two or More Random Effects610
17.6.1.Models and Examples610
17.6.2.Checking Model Assumptions613
17.6.3.Estimation of σ2613
17.6.4.Estimation of Variance Components614
17.6.5.Confidence Intervals for Variance Components616
17.6.6.Hypothesis Tests for Variance Components620
17.6.7.Sample Sizes622
17.7.Mixed Models622
17.7.1.Expected Mean Squares and Hypothesis Tests622
17.7.2.Confidence Intervals in Mixed Models625
17.8.Rules for Analysis of Random and Mixed Models627
17.8.1.Rules—Equal Sample Sizes627
17.8.2.Controversy(Optional)628
17.9.Block Designs and Random Blocking Factors630
17.10.Using SAS Software632
17.10.1.Checking Assumptions on the Model632
17.10.2.Estimation and Hypothesis Testing635
Exercises639
18.Nested Models645
18.1.Introduction645
18.2.Examples and Models646
18.3.Analysis of Nested Fixed Effects648
18.3.1.Least Squares Estimates648
18.3.2.Estimation of σ2649
18.3.3.Confidence Intervals650
18.3.4.Hypothesis Testing650
18.4.Analysis of Nested Random Effects654
18.4.1.Expected Mean Squares654
18.4.2.Estimation of Variance Components656
18.4.3.Hypothesis Testing657
18.4.4.Some Examples658
18.5.Using SAS Software662
18.5.1.Voltage Experiment662
Exercises667
19.Split-Plot Designs675
19.1.Introduction675
19.2.Designs and Models676
19.3.Analysis of a Split-Plot Design with Complete Blocks678
19.3.1.Split-Plot Analysis678
19.3.2.Whole-Plot Analysis680
19.3.3.Contrasts Within and Between Whole Plots681
19.3.4.A Real Experiment—Oats Experiment681
19.4.Split-Split-Plot Designs684
19.5.Split-Plot Confounding686
19.6.Using SAS Software687
Exercises691
A.Tables695
Bibliography725
Index of Authors731
Index of Experiments733
Index of Subjects735
热门推荐
- 812856.html
- 2500790.html
- 3270727.html
- 32249.html
- 1626362.html
- 3536191.html
- 865626.html
- 1819565.html
- 1066860.html
- 111747.html
- http://www.ickdjs.cc/book_3774823.html
- http://www.ickdjs.cc/book_3200232.html
- http://www.ickdjs.cc/book_1817207.html
- http://www.ickdjs.cc/book_1714841.html
- http://www.ickdjs.cc/book_1372147.html
- http://www.ickdjs.cc/book_1221393.html
- http://www.ickdjs.cc/book_607612.html
- http://www.ickdjs.cc/book_715321.html
- http://www.ickdjs.cc/book_2700904.html
- http://www.ickdjs.cc/book_2359393.html